Hardware Acceleration of the Gipps Model for Real-Time Traffic Simulation
نویسندگان
چکیده
Traffic simulation software is becoming increasingly popular as more cities worldwide use it to better manage their crowded traffic networks. An important requirement for such software is the ability to produce accurate results in real time, requiring great computation resources. This work proposes an ASIC-based hardware accelerated approach for the AIMSUN traffic simulator, taking advantage of repetitive tasks in the algorithm. Different system configurations using this accelerator are also discussed. Compared with the traditional software simulator, it has been found to improve the performance by as much as 9x when using a single processing element approach, or more depending on the chosen hardware configuration.
منابع مشابه
Prediction of Car Following Behavior Based on the Instantaneous Reaction Time using an ANFIS-CART Based Model
Car-following models are among the most important components of micro traffic flow simulation which is studiedby transportation experts to evaluate new applications of intelligent transportation systems. Until now, several carfollowingmodels have been proposed. An obvious disadvantage of the former models is the great number of parameterswhich are difficult to calibrate. In th...
متن کاملCar Following Model Improvement for Traffic Safety Metrics Reproduction
Car Following models have a critical role in all microscopic traffic simulation models. Current microscopic simulation models are unable to mimic the unsafe behaviour of drivers as most are based on presumptions about the safe behaviour of drivers. Gipps model is a widely used car following model embedded in different micro-simulation models. This paper examines the Gipps car following model to...
متن کاملMANFIS Based Modeling and Prediction of the Driver-Vehicle Unit Behavior in Overtaking Scenarios
Overtaking a slow lead vehicle is a complex maneuver because of the variety of overtaking conditions and driver behavior. In this study, two novel prediction models for overtaking behavior are proposed. These models are derived based on multi-input multi-output adaptive neuro-fuzzy inference system (MANFIS). They are validated at microscopic level and are able to simulate and predict the fut...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملSimulating the Effect of Speed Humps on the U-Turn Traffic
Traffic simulation represents an effective tool for evaluating the suggested alternatives to enhance traffic conditions prior to their application in real sites. U-turn sections represent examples of the complicated sections that cannot be analyzed properly without applying microsimulation approach. Recently, in Iraq, speed humps were applied in prior to the merging locations and U-turn sectio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1304.3507 شماره
صفحات -
تاریخ انتشار 2012